

METFORMIN THERAPY: A COMPARATIVE STUDY OF VITAMIN B₁₂ DEFICIENCY IN PATIENTS WITH TYPE 2 DIABETES MELLITUS

Rahida Karim¹, Mohd Batoor Zaman², Musarrat Zehra³, Zubia Shah⁴, Amjad Zaman⁴

ABSTRACT

Background: Diabetes Mellitus is one of the most common endocrine disorder whereas metformin is the drug of choice and frequently used hypoglycemic agent. Metformin side effects are ignored by most of the physician, although it causes vitamin B₁₂ deficiency.

Methods: This cross-sectional analytical study was carried out to determine the frequency of Vitamin B₁₂ deficiency in Type 2 Diabetes Mellitus patients taking metformin compared with those not taking metformin, in a tertiary care hospital (Hayatabad Medical Complex) Peshawar from July to December 2015. The study population comprised of patients with Type 2 Diabetes Mellitus divided into two groups (group 1 using metformin and group 2 not using metformin therapy). A total of 110 patients of both gender were recruited in the study. Data were collected on a structured performa and analyzed using SPSS version 20. Students "t" test and Chi-square test were used for the comparison of proportion among two study groups, where statistical significance was accepted at $P \leq 0.05$

Results: Total 139 patients were requested for participation out of which 110 responded, 54 male and 56 female patients. Age ranged between 35 to 75 years, mean age was 55.42 ± 9.6 years. The results revealed that, 6 (5.5%) of the total study population had vitamin-B₁₂ deficiency out of whom all were from group-1 (those using metformin). 45 (40.9%) patients had indeterminate deficiency but the difference among the two groups was not significant.

Conclusion: The study showed that Type 2 Diabetic patients using metformin had vitamin B₁₂ deficiency and related complications. So, Type-2 Diabetes Mellitus patients on long term metformin should be screened for Vitamin B₁₂ deficiency and if found deficient should be treated.

INTRODUCTION

Vitamin B₁₂ (Cyanocobalamin) is a water soluble vitamin which plays an important role in haemopoiesis, DNA synthesis as well as neurological functions.¹ The absorption of vitamin B₁₂ is associated with the formation of vitamin B₁₂ complex with intrinsic factor (IF) which is secreted by specialized parietal cells of gastric mucosa. This vitamin B₁₂-IF complex is capable to resist the action of proteolytic enzymes and prevent its degradation. However metformin, a first choice of oral hypoglycemic agent in T2DM (Type 2 Diabetes Mellitus) cause vitamin B₁₂ malabsorption, which in turn may lead to vitamin B₁₂ deficiency and complications linked with its deficiency.^{2,3} About 10-30% patients with Diabetes Mellitus who are on metformin had suffered from vitamin B₁₂ deficiency.^{4,5} The clinically negative consequences of metformin are increased in plasma folate deficiency along with vitamin B₁₂ deficiency.⁶

1. Department of Pediatrics, HMC Peshawar KP

2. House Officer, HMC Peshawar KP

3. Department of Physiology, GKMC Sawabi KP

4. Department of Physiology, KGMC Peshawar KP

Address for correspondence:

Dr. Amjad Zaman

Department of Physiology, HMC Peshawar KP

Cell: 0333-9213079

Email: dramjadpk@hotmail.com

In T2DM metformin is one of the most commonly used oral hypoglycemic drug in the world, and has been recommended by most of the well reputed diabetic associations including "American Diabetes Association", "Korean Diabetes Association", and "European Association for the Study of Diabetes" ⁷

Jolien de Jager et al³ studied that there was a mean decrease of vitamin B₁₂ concentration in 19% patients on long term metformin therapy for more than 4 years which is preventable.

According to Bauman et al.⁵, 10-30% patients who were on metformin therapy for a long time had vitamin B₁₂ deficiency as a result of malabsorption due to antagonist effect of metformin on calcium dependent vitamin B₁₂-intrinsic factor complex uptake by ileal cell surface receptors. Similarly study conducted by Kang D et al.⁸, 22% of patients with T2DM had vitamin B₁₂ deficiency due to its metabolic alteration. Another study conducted by Ting et al.², reveals that 50% of patients have metformin related vitamin B₁₂ deficiency, most importantly those patients using metformin for more than 3 yrs were at higher risk of developing vitamin B₁₂ deficiency. Results from a comparative study by Filioussi K et al⁹ revealed that 40% of study population on metformin treatment suffered from macrocytic anemia as compared to control (non-metformin group) due to reduced serum vitamin B₁₂ level. Few studies in Khyber Pakhtunkhwa Pakistan have been conducted to see the

frequency or prevalence of vitamin B₁₂ deficiency among type 2 diabetic patients on metformin therapy.

MATERIAL AND METHODS

This cross-sectional analytical study was carried out to determine the frequency and compare vitamin B₁₂ deficiency in patients with T2DM on metformin therapy and without metformin use. This study was conducted in Medical and endocrinology departments of Hayatabad Medical Complex Peshawar. Lab procedures were performed in pathology lab at Rehman Medical Institute Peshawar and completed in a period of six months. Both male and female patients with T2DM who satisfy the inclusion and exclusion criteria were enrolled. Convenient sampling technique was used and patients divided in two groups as

- a) Patients of T2DM who were on metformin therapy (n=56)
- b) Known cases of T2DM with no history of metformin therapy (n=54)

The data were collected on structure Performa. Detailed history was taken and thorough clinical examination done. While following selection of subjects, informed consent was taken about the proposed study. 5ml of venous blood was obtained by veni-puncture under aseptic precautions. Blood for smear, glucose measurement and HbA1c was transported to lab in EDTA bottle while blood for serum was taken in non-EDTA bottle.

Regarding biochemical profile (serum vitamin B₁₂), blood sample collected was then centrifuged; the serum obtained was stored at -8°C until the analysis. Serum vitamin B₁₂ concentration was measured by using ECLIA "Electrochemiluminescence assay". Serum vitamin B₁₂ levels <200 pg/mL were considered deficient whereas vitamin B₁₂ levels more than 400 pg/mL were considered normal. Blood levels of B₁₂ between 200 and 400 pg/mL were considered indeterminate.^{10,11}

Data analysis was done using SPSS version 20 and MS excel. Statistical significance of difference between two groups was determined by using Students "t" test and Chi-square test, where statistical significance was accepted at $P \leq 0.05$

RESULTS

A total of 110 out of 139 sampled subjects (response rate 79.1%) with mean age 55.42 ± 9.6 (ranged from 35-75 years) participated in the study, of whom 56 (50.9%) were the cases (T2DM on metformin) and 54 (49.1%) were Control (T2DM without metformin) (Fig 1). Among total 56 (50.9%) were female and 54 (49.1%) were male (Fig 2). Further the age categories indicates that majority 40 (36.4%) of them were from 45-55 Years group followed 35 (31.8%) from 55-65 Years, 19 (17.3%) from 35-45 Years and 16 (14.5%) from 65-75 Years

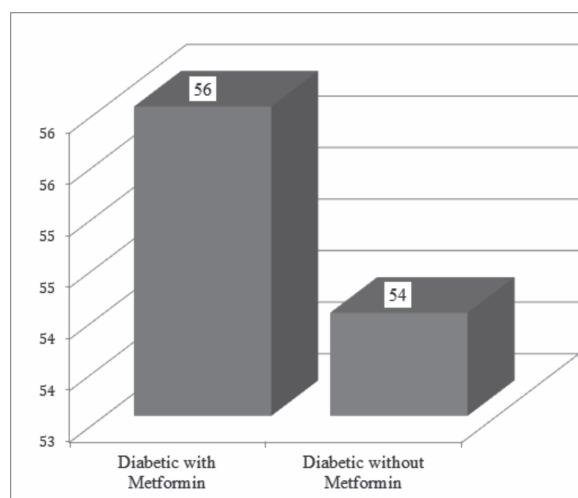


Figure 1: Distributions of study participants by cases and control

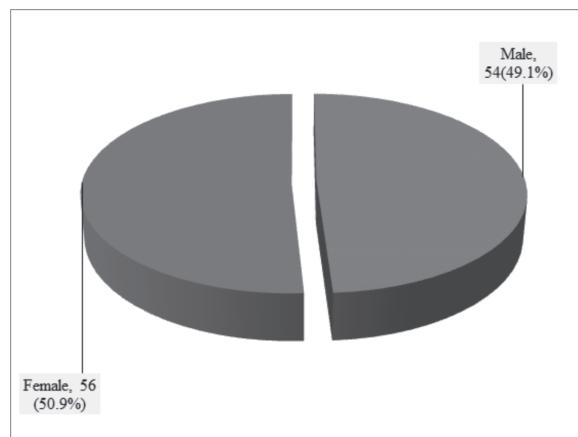


Figure 2: Distribution of the participant with respect to their gender

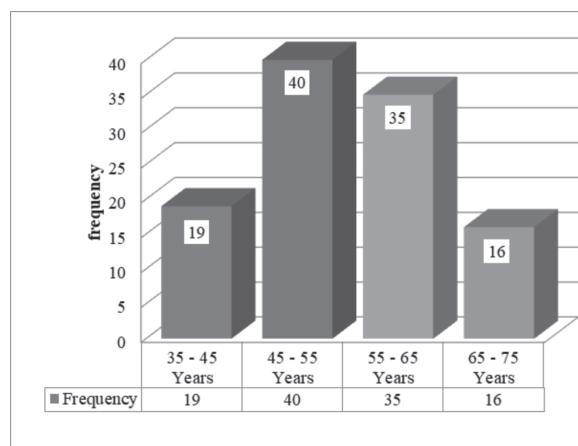


Figure 3: distribution of the Participants with respect to their Age categories

Table 1: Prevalence of Vitamin-B12 Deficiency

Prevalence of Vit-B ₁₂ defecency	Therapy		Total	P-Value
	Metformin	Non metformin		
Deficient in Vit-B12	6 (5.5%)	0 (0.0%)	6 (5.5%)	0.047
Indeterminate Deficiency	45 (40.9%)	49 (44.5%)	94 (85.5%)	
Normal	5 (4.5%)	5 (4.5%)	10 (9.1%)	
Count % of Total	56 (50.9%)	54 (49.1%)	110 (100%)	

Table 2: Comparison of Biochemical and Hematological indices in patients with and without metformin therapy

Param- eter	Mean \pm SD Diabet- ic with Metformin	Mean \pm SD Diabet- ic without Met- formin	Mean differ- ences	95% Confidence Interval of the Difference		P-Value
				Lower	Upper	
RBS	196.64 \pm 58.6	197.54 \pm 52.843	-0.894	-22.0	20.2	0.93
Hb	12.4 \pm 1.9	13.1 \pm 1.8	0.75	-1.4	-0.055	0.035
TLC	9135.7 \pm 3738.0	8711.4 \pm 2772.1	424.2	-823.1	1671.6	0.50
Platelets	329250.0 \pm 128930.0	340888.8 \pm 145912.9	-11638.8	-63630.5	40352.7	0.65
MCV	84.1 \pm 8.3	81.8 \pm 8.7	-2.2	-5.5	0.96	0.16
Vit-B12	195.10 \pm 131.5	270 \pm 256.3	-75.0	-153.0	2.5	0.05
HbA1c	9.3 \pm 3.0	10.2 \pm 2.4	-0.88	-1.9	0.1	0.09

age group. (Fig 3)

Vitamin B₁₂ status among the study population

The results revealed when both groups, Type 2 Diabetes Mellitus on metformin and Type 2 Diabetes Mellitus patients not using metformin, 6 (5.5%) of the total study population had vit-B₁₂ deficiency out of whom all were from group-1 (those using metformin). 45 (40.9%) patients had indeterminate deficiency but the difference among the two groups was not significant. Normal range of vitamin B₁₂ reported only among 5 (4.5%) patients on metformin use and 5 (4.5%) patients non-metformin users. Table 1

Comparison of Hematological determinants in T2DM patients with and without metformin use.

The hematological indicators like; Hb, TLC, Platelets count, MCV were investigated during this study. The main variables of interest was Vitamin B₁₂ and HbA1c were also compared in both of the groups (Diabetic patients with and without Metformin)

DISCUSSION

Metformin is one of the most widely used drug for treatment of T2DM in the world. Long term metformin therapy results in vitamin B₁₂ deficiency among 30% of T2DM patients⁹

This cross-sectional analytical study in KP, Pakistan which was designed to determine and com-

parevitamin B₁₂ deficiency in adults with T2DM taking metformin with those not taking metformin.

Results of present study indicated that 6(5.5%) of the total study population (n=110) had Vitamin-B₁₂ deficiency out of whom all were from group-1 (those using metformin). Similarly 45 patients (40.9%) had indeterminate deficiency but the difference among the two groups was not significant. The results of the present study is consistent with Matthew C et.al.¹² According to them few patients suffered from vitamin-B₁₂ deficiency and 54% of diabetic patients with metformin had indeterminate deficiency i.e. Vitamin B₁₂ level ranged between 200 and 400pg/mL. A study by Reintatatler L¹³, revealed that the prevalence of vit-B₁₂ deficiency was 5.8% among T2DM patients who were on metformin therapy as compare 2.4% among those T2DM patient who were not using metformin (P = 0.0026)¹³. These results consistent with and support the findings of the present study. The metformin therapy has been reported to decrease serum vitaminB₁₂ level as indicated in efficacy trial conducted by DeFronzo and Goodman¹⁴.

The comparative analysis of vitamin B₁₂ level in the present study indicates mean Vitamin-B₁₂ level in patients on metformin therapy was 195.10 \pm 131.5 pg/mL as compare to 270 \pm 256.3pg/ml in patients who were not using metformin, which accounted for a mean difference of 75.0 pg/ml, which is consistence with study by Ting RZ,² and De deger J,³ which also indicates between 10% -30% of people who take metformin on

regular basis have evidence of decreased vitamin B₁₂ absorption. Vitamin B₁₂ level was significantly lower in patients who have been on metformin for ≥ 10 years compared with those patients with < 10 years history of metformin use. Similarly, patients who were on metformin at a dose of > 1000 mg/day had significantly lower vitamin B₁₂ level when compared with patients on ≤ 1000 mg/day.¹⁵ Similarly RaheellIftikhar R, et al,¹⁶ also reported that 31% of patients with metformin had vitamin B₁₂ deficiency as compared to 8.6% among control ($p=0.002$). Dose of metformin had inverse correlation with vitamin B₁₂ level and the difference was statistically significant ($p < 0.001$).¹⁶ Similar studies from other countries (Brazil) by Ghazanfari Z,¹⁷ also show low vitamin B₁₂ level in 6.9% of patients on metformin.

CONCLUSION

From the study results and respective literature review it is concluded that metformin use and its dose was positively associated with Vitamin B₁₂ deficiency. Thus it is recommended that vitamin B₁₂ and routine hematological profile screening of patients with T2DM should be adopted in practice which may help to prevent complications associated with Vitamin B₁₂ deficiency and if found deficient shall be treated.

REFERENCES

1. Kibirige D, Mwebaze R. Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified? *J Diabetes Metab Disord* 2013;12(1):17.
2. Ting RZ, Szeto CC, Chan MH, Ma KK, Chow KM. Risk factors of vitamin B(12) deficiency in patients receiving metformin. *Arch Intern Med* 2006;166(18):1975-9.
3. de Jager J, Kooy A, Lehert P, Wulffele MG, van der Kolk J, Bets D, et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. *BMJ* 2010;340:c2181.
4. Ko SH, Ahn YB, Song KH, Han KD, Park YM, Kim HS. Association of vitamin B12 deficiency and metformin use in patients with type 2 diabetes. *J Korean Med Sci* 2014;29(7):965-72.
5. Bauman WA, Shaw S, Jayatilleke E, Spungen AM, Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. *Diabetes Care* 2000;23(9):1227-31.
6. Sahin M, Tutuncu NB, Ertugrul D, Tanaci N, Guvener ND. Effects of metformin or rosiglitazone on serum concentrations of homocysteine, folate, and vitamin B12 in patients with type 2 diabetes mellitus. *J Diabetes Complications* 2007;21(2):118-23.
7. Ikeda K, Fujimoto S, Morling B, Ayano-Takahara S, Carroll AE, Harashima S, et al. Social orientation and diabetes-related distress in Japanese and American patients with type 2 diabetes. *PLoS One* 2014;9(10):e109323.
8. Kang D, Yun JS, Ko SH, Lim TS, Ahn YB, Park YM. Higher prevalence of metformin-induced vitamin B12 deficiency in sulfonylurea combination compared with insulin combination in patients with type 2 diabetes: a cross-sectional study. *PLoS One* 2014;9(10):e109878.
9. Filoussi K, Bonovas S, Katsaros T. Should we screen diabetic patients using biguanides for megaloblastic anaemia? *Aust Fam Physician* 2003;32(5):383-4.
10. Snow CF. Laboratory diagnosis of vitamin B12 and folate deficiency: a guide for the primary care physician. *Arch Intern Med* 1999;159(12):1289-98.
11. Rice L. Laboratory diagnosis of vitamin B12 and folate deficiency. *Arch Intern Med* 1999;159(22):2746-7.
12. Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Seaquist D, Topolski R. The prevalence of vitamin B(12) deficiency in patients with type 2 diabetes: a cross-sectional study. *J Am Board Fam Med* 2009;22(5):528-34.
13. Reinstatler L, Yan Ping QI, Williamson RS, Garn JV, Godfrey P, Oakley JR. Association of Biochemical B12 Deficiency With Metformin Therapy and Vitamin B12 Supplements;The National Health and Nutrition Examination Survey, 1999–2006. *Diabetic Care* 2012;35(1).
14. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. *N Engl J Med* 1995;333(9):541-9.
15. Nervo M, Lubini A, Raimundo FV, Faulhaber GA, Leite C, Fischer LM, et al. Vitamin B12 in metformin-treated diabetic patients: a cross-sectional study in Brazil. *Rev Assoc Med Bras (1992)* 2011;57(1):46-9.
16. Iftikhar R, Kamran SM, Qadir A, Iqbal Z, bin Usman H. Prevalence of vitamin B12 deficiency in patients of type 2 diabetes mellitus on metformin: a case control study from Pakistan. *Pan Afr Med J* 2013;16:67.
17. Ghazanfari Z, Haghdoost AA, Alizadeh SM, Atapour J, Zolala F. A Comparison of HbA1c and Fasting Blood Sugar Tests in General Population. *Int J Prev Med* 2011;1(3):187-94.