

RELATION OF SERUM AMMONIA LEVEL WITH PORTO-SYSTEMIC ENCEPHALOPATHY AND ITS SHORT TERM PROGNOSTIC ROLE IN PATIENTS WITH LIVER CIRRHOSIS

Munir Hussain¹, Noaman Yousaf³, Afshan Bashir³, Khalid Mehmood², Ghazala Zarin¹, Arshed Parvez¹

ABSTRACT

Background: Porto-systemic encephalopathy (PSE) and hepatic encephalopathy (HE) are the terms used synonymously to describe a central nervous system disturbance associated with acute or chronic failure of liver. Although PSE is supposed to arise due to hepatic failure to clear the toxic products from blood yet it has not been clearly established that which of those toxic products should be labeled as culprits in the etiology of hepatic or portosystemic encephalopathy.

Objectives: To study the relation of serum ammonia (NH_3) levels with portosystemic encephalopathy and its severity in patients with hepatic failure.

To assess the short term prognostic role of serum ammonia in hepatic encephalopathy.

Methodology: Total 100 patients having hepatic encephalopathy were selected for the study. All patients were evaluated by detailed history and examination for signs of chronic liver disease, grades of HE and serum ammonia levels along with other baseline investigations.

Results: This study included 70% male and 30% female patients with mean age of 50.89 ± 12.81 years. Ninety seven percent of patients were positive for anti HCV while 3% for anti HCV and HbsAg both. Serial estimations of serum ammonia and evaluation of clinical grades of HE demonstrated a progressive decline in serum ammonia levels paralleled by improvement in grades of encephalopathy on days 1, 3, 5, 7 and 9.

Conclusion: Decrease in serum ammonia level was associated with decrease in grades of hepatic encephalopathy. This study showed a positive correlation between serum NH_3 levels and grades of hepatic encephalopathy. The study also revealed the short term prognostic role of NH_3 levels in patients with HE.

Key words: Serum ammonia (NH_3) level, hepatic encephalopathy, porto-systemic encephalopathy, liver cirrhosis.

INTRODUCTION

Porto-systemic encephalopathy or Hepatic encephalopathy (HE) is amongst one of the most debilitating complications of acute or chronic hepatic failure¹. Hepatic encephalopathy can be defined as a disturbance in central nervous system function due to acute or chronic hepatic failure.

Hepatic encephalopathy is a cluster of neuropsychiatric manifestations which are present both in acute and chronic hepatic failure and are reversible by taking appropriate measures². In HE, there is progressive decline in the level of consciousness i.e. from lethargy to somnolence to stupor and finally coma and hampering

of intellectual capability i.e. reasoning, orientation and neurologic deficits like Asterixis or flapping tremors^{3,4}. Hepatic encephalopathy must be differentiated from the other causes which lead to liver damage and the manifestation of similar symptoms. These other causes include brain and liver damage caused by alcohol and copper (Wilson's disease), neurologic deficits caused by bilirubin deposition in brain (Kernicterus), cerebral hemorrhage caused by disorders of coagulation due to liver damage and other abnormalities that are not associated with liver failure⁵.

The pathogenesis of HE is quite complex and still it is not completely understood⁶. However it is clear that there is shunting of blood from portal to systemic circulation and it has got a crucial role in the etiopathogenesis of HE⁵. The toxins which are thought to be involved in the etiology of hepatic encephalopathy actually do so as a result of portosystemic shunting of blood and include; ammonia, aromatic amino acids, manganese, benzodiazepine like substances i.e. GABA, mercaptans and pro-inflammatory cytokines leading to changes in intestinal microbiota^{1,7-10}. So lot of toxins have been nominated that can contribute to hepatic encephalopathy yet it is widely accepted that NH_3 plays a pivotal role in the pathogenesis of this disorder^{4,11,12}. It is an established fact that all these substances are produced normally

1. Department of Pathology, Khyber Girls Medical College, Peshawar

2. Department of Pathology Hayatabad Medical Complex, Peshawar

3. Mufti Mehmood Memorial Hospital, D.I. Khan

Address for correspondence:

Dr. Munir Hussain

Department of Pathology, Khyber Girls Medical College, Hayatabad, Peshawar.

Cell # 92-3339380354

E-mail: sendtodrmunir@gmail.com

in the body and most of them are cleared by the liver on regular basis, so liver damage in a way which leads to shunting of blood from liver to systemic circulation facilitates these toxins and especially NH_3 to cross blood brain barrier leading to brain edema and HE.

Ammonia is generated by different tissues, the principal tissues being liver and intestine while the others include muscle and kidney. Intestinal ammonia is derived firstly by the action of the enzyme urease produced by colonic bacteria which degrades urea into ammonia and secondly by deamidation of glutamine (amino acid) in the small intestine to glutamate and ammonia by the help of enzyme glutaminase². Liver causes production of urea in an attempt to metabolize ammonia. Liver causes production of urea in an attempt to metabolize ammonia. Liver is the principal site of removal of excess ammonia from the body and it does so by converting it into urea in periportal hepatocytes and glutamine in centrovenular hepatocytes⁵, the urea is then excreted by kidneys. When there is acute or chronic hepatic failure, there is portosystemic shunting as well as reduced detoxification of ammonia by liver so reduced clearance of ammonia leads to hyperammonemia. Hyperammonemia exerts injurious effects on brain by causing brain edema⁵. Under physiological conditions astrocytes of the brain also carry on the function of detoxification of ammonia. Astrocytes form one third portion of the cerebral cortex. Astrocytes perform detoxification of ammonia by causing amidation of glutamate(excitatory neurotransmitter) and ammonia to glutamine⁵.

In case of liver failure the additional detoxification function is then performed by astrocytes, as a result they become swollen, leading to cerebral edema and altered mental function^{3,13}. Recent studies have put light on the precise mechanism behind astrocyte swelling and dysfunction. In fact increased ammonia levels lead to oxidative stress (nitrosative stress) on astrocytes by causing production of reactive nitrogen species like nitric oxide (NO) and others which eventually leads to astrocyte dysfunction, edema and HE⁶. Increased neuronal nitric oxide synthase (nNOS) activity was found in the brains of rats in which portacaval anastomosis was done.¹⁴ Along with increased activity of nNOS there was increased production of nitric oxide (NO) as well in brains of portacaval shunted rats when they were given an infusion of NH_3 ¹⁵. It means that in portacaval shunting there is increased production of NO in brain (astrocytes) due to hepatic bypassing of the blood. Nitric oxide then being a free radical causes swelling and astrocyte dysfunction secondary to increased NH_3 levels.

A lot of research work points towards the fact that NH_3 plays a pivotal role in the pathogenesis of portosystemic encephalopathy^{4,11,16,17}. The role of NH_3 as a crucial factor in pathogenesis of HE has been proposed on the basis of a rise in NH_3 levels of patients

having cirrhosis and HE, increase in blood-brain barrier permeability to NH_3 in HE; and elevations of NH_3 levels associated with astrocyte dysfunction^{12,16-19}.

Measuring venous ammonia levels is helpful in the evaluation of liver disease as a cause of disturbance in consciousness when one is suspecting other causes for such disturbance²⁰. Venous sampling is enough and appropriate for measurement of ammonia and there seems no extra advantage of measuring partial pressure of NH_3 ¹⁷. Adult NH_3 levels in plasma are 19-60 $\mu\text{g}/\text{dL}$ or 15-35 $\mu\text{mol}/\text{L}$ ²¹.

The present study was conducted in order to assess an association between hepatic encephalopathy and serum ammonia levels and it was intended that this would provide guidelines for improved prevention and management of hepatic encephalopathy.

METHODOLOGY

Sampling was carried out at Gastroenterology department of Shaikh Zayed Hospital, Lahore. It was a descriptive, cross sectional study. Sampling was done on Non-probability convenient sampling basis. Duration of study was from 12th October 2017 to 11th April 2018. A total of hundred patients with hepatic encephalopathy who sought admission in Gastroenterology ward, of Shaikh Zayed Hospital through OPD or emergency department and fulfilled the inclusion criteria, were selected for the study.

Adult patients with chronic liver disease, irrespective of gender, presenting with hepatic encephalopathy were included in the study.

All cases of chronic obstructive pulmonary disease, uremia, cardiovascular accident, fulminant hepatic failure, meningitis, hypoglycemia, encephalitis, Wernicke's encephalopathy, psychiatric disturbances, sedative intake and acute respiratory distress syndrome were excluded from the study.

All patients underwent a detailed history and examination for signs of chronic liver disease and grades of encephalopathy. Grading of encephalopathy was done according to West Haven grading.

Serum ammonia of all the patients was measured along with other baseline investigations through standard laboratory techniques. Blood samples were collected in appropriate vacutainers and were processed in pathology laboratory of the Shaikh Zayed Hospital. Venous blood was tested for serum ammonia, full blood count, liver function tests and renal function tests at day 1, 3 5, 7 and 9. The kit used for the estimation of Serum ammonia was Amon flex reagent cartridge Cat No. DF19. All data was collected on the pre-designed proforma.

SPSS 23 was used to derive different statistical parameters. The study variables were age, gender, Hemoglobin (Hb), Total Bilirubin, Alanine transaminase

(ALT), Aspartate transaminase (AST), Alkaline phosphatase (ALP), Serum creatinine, Blood urea nitrogen (BUN), Grades of hepatic encephalopathy and serum ammonia levels. One way anova test was applied to evaluate changes in serum ammonia levels on different days. Chi Square test was applied for association with decrease in serum ammonia levels and grades of HE. A p value of ≤ 0.05 at 95 % confidence interval was considered as significant.

RESULTS

Mean age of the patients was 50.89 ± 12.81 years. Minimum age range was 21-30 years while maximum range was 71-80 years. Maximum numbers of patients were in age range of 51-60 years, (41%).

In present study 70 (70%) patients were males and 30 (30%) patients were females.

Mean Hemoglobin levels of the subjects (11.07 ± 2.46 mg/dl) were low, while Bilirubin levels were high (6.17 ± 7.47 mg/dl) but not high enough. Similarly mean ALT (120.41 ± 242.07 U/L) and AST (151.51 ± 205.53 U/L) levels were raised indicating liver injury along with raised levels of ALP (162.95 ± 115.87 U/L) indicating slight degree of obstruction consequent upon cirrhosis. The Creatinine levels were within normal range, while BUN levels were slightly raised but insignificant, indicating normal renal functions.

In this study Hepatitis C was the commonest cause of liver cirrhosis and consequent hepatic encephalopathy, while Hepatitis B alone was not found to cause the cirrhosis and its complications.

Higher ammonia levels were associated with higher grades of HE. Ammonia levels of 40.59 ± 12.49

Table 1: West Haven grading of Hepatic Encephalopathy(1)

Hepatic encephalopathy	Consciousness	Intellectual function	Personality	Behavior
Grade 0	No detectable changes	No detectable changes	No detectable changes	None
Grade I (mild)	Sleep disturbance, trivial lack of awareness	Shortened attention span, mildly impaired computations	Euphoria, depression, irritability	Muscular incoordination, impaired handwriting, Asterixis may be present
Grade II (moderate)	Lethargy, mild disorientation to time	Amnesia of recent events, grossly impaired computations	Overt change in personality, inappropriate behavior	Slurred speech, Asterixis, hypoactive reflexes, ataxia
Grade III (severe)	Somnolence, confusion, semistupor	Inability to compute, disorientation to place	Paranoia, bizarre behavior	Hyperactive reflexes, Nystagmus, (+) Babinski's sign, Clonus, rigidity
Grade IV (coma)	Stupor	None	None	Dilated pupils, Opisthotonus, coma, lack of verbal, eye & oral response

did not show any association with hepatic encephalopathy, ammonia levels of 67.87 ± 29.20 $\mu\text{mol/L}$ were associated with Grade I and Grade II encephalopathy while ammonia levels of 123.44 ± 52.27 $\mu\text{mol/L}$ were associated with Grade III HE and levels of 249.65 ± 92.57 $\mu\text{mol/L}$ were related to Grade IV encephalopathy.

Day wise correlation of mean serum NH_3 levels and hepatic encephalopathy indicated that higher levels of serum NH_3 were associated with higher grades of hepatic encephalopathy and the grades of hepatic encephalopathy kept on decreasing with decreasing levels of serum ammonia with the passage of time due to compensation. Mean ammonia levels at day 1 and 3 were associated with grade IV HE, while levels on day 5 were associated with grade III encephalopathy. Serum ammonia levels at day 7 corresponded to grade II and I encephalopathy while levels at day 9 were not associated with any grade of encephalopathy.

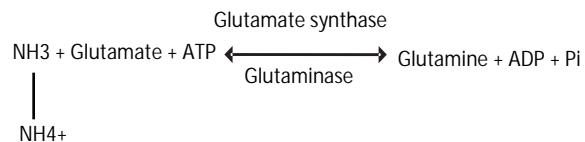


Figure 1: Conversion of NH_3 and glutamate to glutamine and vice versa

Table 2: Distribution of patients according to gender

Gender	Number	Percentage
Male	70	70 %
Female	30	30 %
Total	100	100 %

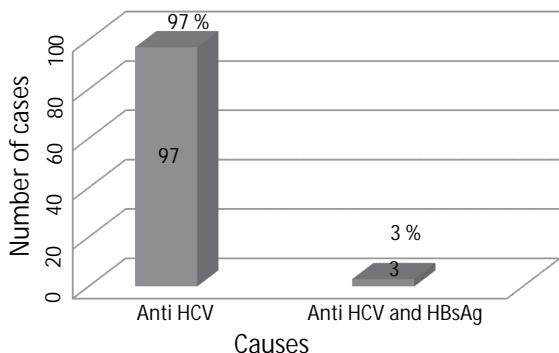


Figure 2: Distribution of patients according to causes of cirrhosis and HE

Table 3: Laboratory data of different parameters

Investigations	Mean \pm SD
Hemoglobin (mg/dl)	11.07 \pm 2.46
Total Bilirubin (mg/dl)	6.17 \pm 7.47
ALT (U/L)	120.41 \pm 242.07
AST (U/L)	151.51 \pm 205.53
ALP (U/L)	162.95 \pm 115.87
Serum Creatinine (mg/dl)	1.75 \pm 1.22
BUN (mg/dl)	33.98 \pm 25.41

Table 4: Correlation of mean serum NH3 levels and hepatic encephalopathy grades

HE grades	Serum ammonia level ($\mu\text{mol/L}$) (Mean \pm SD)
Grade 0	40.59 \pm 12.49
Grade I & II	67.87 \pm 29.20
Grade III	123.44 \pm 52.27
Grade IV	249.65 \pm 92.57

DISCUSSION

Mean age of the patients in this study was 50.89 ± 12.81 years. This finding was comparable with the study done by Queiroz et al²² in which the mean age of the patients was 56.3 ± 10.8 years.

Table 5: Day wise correlation of mean serum NH3 levels and hepatic encephalopathy

Days	Serum ammonia level ($\mu\text{mol/L}$) (Mean \pm SD)	HE grades	p value
Day 1	296.19 \pm 106.38	Grade IV	0.001
Day 3	203.11 \pm 78.77	Grade IV	0.001
Day 5	123.44 \pm 52.27	Grade III	0.001
Day 7	67.87 \pm 29.20	Grade I & II	0.001
Day 9	40.59 \pm 12.49	Grade 0	0.001

In present study 70% of the patients were males and 30% of the patients were females while in study conducted by Wazir Mohammad Khan et al²³, 63% were males and 37% were females, similarly in a study done by Abidullah khan et al²⁴, there were 81 males as compared to 34 females who had hyperammonemia and HE. In both studies the number of males and females was comparable to present study. Moreover the number of males was more as compared to females in all the studies.

The mean total bilirubin levels of the patients in study were 6.17 ± 7.47 gm/dl. In a study conducted by Dasani and his co-workers²⁵ the total bilirubin of the subjects was 2.24 ± 0.20 gm/dl. So the total bilirubin of the patients in this study was much higher than Dasani et al.

In present study the mean serum ALT levels were 120.41 ± 242.07 U/L, a value far higher than the mean value of 82.33 ± 43.2 U/L in a study conducted by Senthil Raj et al²⁶.

Out of 100 patients having HE, 97 (97%) were hepatitis C positive while 3 (3%) were both hepatitis B and C positive, and it was comparable to the study conducted by Wazir Mohammad Khan et al²³ in which out of a total 100 patients, 91 (91%) had hepatitis C while 9 (9%) patients were having hepatitis B.

The ammonia levels showed positive correlation with the grades of HE, higher the levels of serum ammonia, higher were the grades of HE. Patients with mean ammonia levels of 40.59 ± 12.49 $\mu\text{mol/L}$ had no sign of HE while the patients with mean levels of 249.65 ± 92.57 $\mu\text{mol/L}$ were having grade IV encephalopathy. The rest of the patients had grades in between. The fact that increasing levels of ammonia were associated with increasing grades of HE was consistent with the studies done by Abidullah khan et al²⁴ and Omar Qureshi et al²⁷.

In this study it was found that the levels of

ammonia kept on decreasing gradually along with the grades of encephalopathy during the stay of the patients in hospital that is there was a positive correlation between the decreasing NH_3 levels and the grades of encephalopathy. This finding points towards the fact that ammonia has got prognostic role in the treatment of hepatic encephalopathy and it is in accordance with the study conducted by Shalimar et al²⁸. Moreover it also strengthens the fact that ammonia levels and grades of HE are strongly associated with each other.

CONCLUSION

In present study it was found that NH_3 levels have strong positive correlation with the grades of hepatic encephalopathy, as the levels of NH_3 rise the severity of encephalopathy also increases and with decrease in serum NH_3 levels the severity of the disease also declines. Moreover it was also concluded that serum ammonia levels can be used as a prognostic indicator for the patients having hepatic encephalopathy during their hospital stay.

REFERENCES

1. Toris G T, Bikis CN, Tsourouflis GS, Theocharis SE. Hepatic encephalopathy: An updated approach from pathogenesis to treatment. *Med Sci Monit*. 2011;17(2):53-63.
2. Blei AT, Cordoba J. Practice Parameters Committee of the American College of Gastroenterology. Hepatic encephalopathy. *Am J Gastro* 2001;96(7):1968-76.
3. Abou-Assi S, Vlahcevic ZR. Hepatic encephalopathy. Metabolic consequence of cirrhosis often is reversible. *Postgrad Med*. 2001; 109(2):52-70
4. Albrecht J, Jones EA. Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. *J Neurol Sci*. 1999;170(2):138-46.
5. Cordoba J Hepatic Encephalopathy: From the Pathogenesis to the New Treatments. *ISRN Hepatology*. 2014; 2014:1-16.
6. Albrecht J, Norenberg M. D. "Glutamine: a Trojan horse in ammonia neurotoxicity". *Hepatology*. 2006; 44 (4): 788-94.
7. Hazell AS, Butterworth RF. Hepatic encephalopathy: an update of pathophysiologic mechanisms. *Proc Soc Exp Biol Med*. 1999; 222(2): 99-112.
8. Lockwood AH . Positron emission tomography in the study of hepatic encephalopathy. *Metab Brain Dis*. 2002;17(4):431-35.
9. Williams R. Bacterial flora and pathogenesis in hepatic encephalopathy. *Aliment Pharmacol Ther*. 2007;25(1):17-22.
10. Patidar KR, Bajaj JS. Covert and overt hepatic encephalopathy: diagnosis and management. *Clin Gastroenterol Hepatol*. 2015;13(12):2048-61.
11. Norenberg MD. Astrocytic-ammonia interactions in hepatic encephalopathy. *Semin Liver Dis* 1996;16(3):245-53.
12. Butterworth RF. The neurobiology of hepatic encephalopathy. *Semin Liver Dis*. 1996;16 (3):235-44.
13. Cordoba J , Blei AT. Treatment of hepatic encephalopathy. *Am J Gastroenterol*. 1997;92(9):1429-39.
14. Suárez I, Bodega G, Rubio M, Felipe V, Fernández B. Neuronal and inducible nitric oxide synthase expression in the rat cerebellum following portacaval anastomosis. *Brain Research*. 2005;1047(2):205-13.
15. Master S, Gottstein J, Blei AT. Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. *HEPATOLOGY*. 1999;30(4):876-80.
16. Keiding S, Sorensen M, Bender D, Munk OL, Ott P, Vilstrup H. Brain metabolism of ^{13}N -ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. *Hepatology*. 2006;43(1):42-50.
17. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. *Am J Med*. 2003;114(3):188-93.
18. Kundra A, Jain A, Banga A, Bajaj G, Kar P Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. *Clin Biochem*. 2005;38(8):696-99.
19. Ott P, Larsen FS. Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. *Neurochem Int*. 2004;44(4):185-98.
20. Donovan JP, Schafer DF, Shaw BW Jr, Sorrell MF. Cerebral edema and increased intracranial pressure in chronic liver disease. *Lancet*. 1998;351(9104):719-21.
21. Michael L. Bishop, Edward P.F, Larry E.S.Clinical chemistry : Principles, techniques, and correlations. Lippincott Williams & Wilkins, a Wolters Kluwer business Philadelphia., 2013.
22. Queiroz DM, Rocha AM, Rocha GA, Cinque SM, Oliveira AG, Godoy A, et al. Association between *Helicobacter pylori* infection and cirrhosis in patients with chronic hepatitis C virus. *Dig Dis Sci*. 2006; 51(2):370-73.
23. Khan W M, Badshah A, Haider I, Khan A , Ajmal F. Association of serum ammonia levels with grades of hepatic encephalopathy in patients with decompensated chronic liver disease. *J Med Sci* 2017;25(4):421-4.
24. Khan A, Ayub M, Khan W M. Hyperammonemia Is Associated with Increasing Severity of Both Liver Cirrhosis and Hepatic Encephalopathy. *International Journal of Hepatology*. 2016;2016(2016):5.
25. Dasani BM, Sigal SH, Lieber CS. Analysis of risk

factors for chronic hepatic encephalopathy: the role of Helicobacter pylori infection. Am J Gastroenterol 1998;93(5):726-31.

26. Raj S T, Lalchandani A, Mathiyalagan N. Evaluation of Serum Ammonia in Hepatic Encephalopathy Patients and Its Correlation with Clinical Severity. Journal of Gastroenterology and Hepatology Research. 2016;5(5):2185-90.

27. Qureshi M O, Khokhar N, Shafqat F. Ammonia Levels and the Severity of Hepatic Encephalopathy. Journal of the College of Physicians and Surgeons Pakistan 2014;24(3):160-3.

28. Shalimar, Sheikh M F, Mookerjee R P, Agarwal B, Acharya SK, Jalan R. Prognostic Role of Ammonia in Patients with Cirrhosis. Hepatology. 2019;70(3):982-94.

ONLINE SUBMISSION OF MANUSCRIPT

It is mandatory to submit the manuscripts at the following website of KJMS. It is quick, convenient, cheap, requirement of HEC and Paperless.

Website: www.kjms.com.pk

The intending writers are expected to first register themselves on the website and follow the instructions on the website. Author agreement can be easily downloaded from our website. A duly signed author agreement must accompany initial submission of the manuscript.